Disseminated nocardiosis masquerading as abdominal tuberculosis

M. A. JOHN, F.C. PATH. (MICRO.) (S.A.)
T. E. MADIBA, M.MED. (CHIR.) F.C.S. (S.A.)
P. MAHABEER, M.B. CH.B.
K. NAIDOO, F.C.S. (S.A.)
A. W. STURM, M.D., PH.D.

Departments of Medical Microbiology and General Surgery, University of Natal, Durban

Summary

A 32-year-old patient was admitted with a community-acquired pneumonia. She had clinical evidence of AIDS and chest X-ray features consistent with pulmonary tuberculosis. While in the ward she developed an acute abdomen necessitating laparotomy, at which a diagnosis of abdominal tuberculosis was made. Sputum and intraoperative pus specimens grew a multiresistant Nocardia brasiliensis. Microbiological investigations for tuberculosis were negative. The patient died after a short ICU admission from multiple organ dysfunction syndrome.

Nocardia species are long, filamentous, Gram-positive, aerobic organisms belonging to the actinomycete group, which often aggregate in branching chains. They are weakly acid-fast and can be stained using a modified acid-fast technique (Kinyoun stain). Nocardia species mainly cause opportunistic disease in humans with compromised immunity. The lung is most commonly involved, followed by the central nervous system and skin. Although Nocardia brasiliensis is a documented human pathogen, the literature reports Nocardia asteroides as the more prevalent species. However, N. brasiliensis occurs more frequently in immunocompetent individuals, suggesting greater virulence, and the clinical spectrum in this group of patients is limited to lymphocutaneous disease following traumatic inoculation of the skin.

The pathogenesis of Nocardia infection is not fully understood although there is evidence that the bacteria are facultative intracellular pathogens with specific virulence characteristics capable of evading the host immune surveillance. However, after phagocytosis, virulent Nocardia species inhibit phagolysosomal fusion thereby evading oxidative death and survive as cell wall-deficient forms (L-forms). The specific immune response provided by activated T-lymphocytes is responsible for direct death or cytokine-mediated elimination of the organism. Specific antibodies have a limited role in the elimination of this pathogen. Human infection is acquired mostly by inhalation, but may also occur by percutaneous inoculation. We describe a patient with AIDS and peritonitis in whom a diagnosis of Nocardia peritonitis was missed because of the clinical similarity between Nocardia and tuberculous peritonitis.

Case report

A 32-year-old HIV-positive woman was admitted with a community-acquired pneumonia to our tertiary care hospital in February 2002. She had been referred by a local clinic with a 1-month history of productive cough, chest pain, loss of weight and night sweats. In addition, she had vomiting and abdominal pain of one week’s duration. In June 2001 the patient had been diagnosed with pulmonary tuberculosis using chest radiography and sputum, and had been compliant on antituberculous treatment (rifampicin, isoniazid, ethambutol, pyrazinamide) for 8 months.

On admission the patient was emaciated, pale, had a pyrexia of 40°C, blood pressure (BP) 108/70 mmHg, pulse 148 beats/minute, oral thrush and generalised lymphadenopathy. Examination of her respiratory system revealed tachypnoea and bi-basal crepitations. She also had a tender abdomen with a 6 cm hepatomegaly. Splenomegaly was absent and no other masses were palpated. Her white cell count was 7 X 10^9/l (range: 4 - 11 X 10^9/l) with an absolute lymphocyte count of 0.4 X 10^9/l (range: 1.5 - 4 X 10^9/l). Haemoglobin was 5.7 g/dl (range: 11.5 - 13.5 g/dl) and a platelet count of 124 X 10^9/l (range: 150 - 450 X 10^9/l) was recorded. Based on the United States Centers for Disease Control (CDC) criteria, a clinical diagnosis of AIDS was made. Chest X-ray showed extensive bilateral shadowing consistent with severe community-acquired pneumonia and there were features consistent with pulmonary tuberculosis. After sputum specimens were taken, antituberculous therapy was recommenced empirically.

A sputum specimen received a day after admission was reported to have filamentous branching Gram-positive bacteria on microscopy. A diagnosis of nocardial pneumonia was made following a positive Kinyoun stain and the patient was commenced on co-trimoxazole.

Two days later she developed worsening abdominal pain and vomiting and an erect plain abdominal X-ray showed ‘fluid levels’. After excluding pyelonephritis and gynaecological pathology, a clinical diagnosis of acute intestinal obstruction was entertained. The patient was initially managed non-operatively but she subsequently developed peritonitis which necessitated emergency laparotomy. This revealed thin pus in the peritoneal cavity. The omentum was thickened, contained pus-filled cavities and was adherent to the proximal small bowel. There was a kink in the mid-jejunum causing complete obstruction. The bowel in this area...
was thin-walled but still macroscopically viable, with no perforation. The rest of the small intestine was thick-walled, with multiple nodular lesions measuring 1 - 2 mm that were suggestive of tuberculosis. There was no macroscopic evidence of caseation or lymphadenopathy. The supra-colic compartment was not involved in this process. The liver and other intra-abdominal organs appeared normal. The findings were macroscopically suggestive of abdominal tuberculosis.

Intraoperative pus specimens were sent for microbiological evaluation and an omental biopsy was sent for histological examination. Postoperatively the patient was managed in the intensive care unit for acidosis and renal failure. She deteriorated progressively despite resuscitation and died 2 days after surgery from multiple organ dysfunction syndrome.

The pus sent from theatre showed the same Kinyoun-positive bacilli as in the sputum. Dry, white colonies grown from sputum and pus specimens were cultured on blood and chocolate agar after 48 hours of incubation in 8% CO2 at 37°C. The organism was identified as *Mycobacterium* species. Acid-fast staining and 8-week selective culture for *Mycobacterium* species showed resistance to co-trimoxazole and imipenem. Susceptibility testing using the E-test showed resistance to co-trimoxazole and imipenem. Acid-fast staining and 8-week selective culture for *Mycobacterium* species showed resistance to co-trimoxazole and imipenem. Acid-fast staining and 8-week selective culture for *Mycobacterium* species showed resistance to co-trimoxazole and imipenem. Acid-fast staining and 8-week selective culture for *Mycobacterium* species showed resistance to co-trimoxazole and imipenem. Acid-fast staining and 8-week selective culture for *Mycobacterium* species showed resistance to co-trimoxazole and imipenem. Acid-fast staining and 8-week selective culture for *Mycobacterium* species showed resistance to co-trimoxazole and imipenem.

Discussion

Nocardiosis infection is a relatively common opportunistic infection in the immune-compromised host and the environment is the main source of the organism. The frequent antecedents are AIDS, immunosuppressive drug treatment, corticosteroid therapy, continuous ambulatory peritoneal dialysis (CAPD) and chronic illness. Predisposing conditions to nocardiosis have been extensively documented. Infections due to this organism are being reported with increasing frequency, the reasons being the wider use of immunosuppressive therapy, the AIDS pandemic, more invasive diagnostic approaches to infection in immune-compromised hosts, and a heightened index of suspicion among physicians.

Most cases of *Nocardia* infection are of the pulmonary or disseminated types. *N. asteroides* being the principal pathogen. Pulmonary nocardiosis is difficult to differentiate from tuberculosis and the two infections may co-exist. Consequently infection with this organism is frequently underdiagnosed. In most HIV-infected patients *Nocardia* infection is disseminated at the time of diagnosis and is characterised by an indolent course that may be difficult to differentiate from other systemic infections.

This case illustrates the disseminated nature of this disease, its similarity to abdominal tuberculosis and the co-existence of pulmonary tuberculosis and nocardiosis. Findings at laparotomy appeared to be consistent with miliary tuberculosis except for the absence of intra-abdominal lymphadenopathy. This is not surprising, as patients with AIDS may not manifest a typical inflammatory response, and involvement and degeneration of lymph nodes have been reported. Although we did not have a CD4 cell count for our patient, she did have clinical and laboratory evidence of severe immune suppression.

In populations where HIV-associated tuberculosis is common, it is possible that some patients with a negative smear for pulmonary tuberculosis may have nocardiosis. South Africa is currently experiencing an uncontrolled tuberculosis epidemic, and has among the highest HIV prevalence rates in southern Africa and in the world. Consequently, nocardiosis and the difficulty in differentiating this infection from tuberculosis will continue to be a challenge to clinicians in this country.

Eight cases of nocardial peritonitis have been reported in the literature in the last three decades, as shown in Table I. The most common organism in these reports was *N. asteroides*. The present case is the second case of *Nocardia* peritonitis due to *N. brasiliensis*, the first one having been reported by Bonacini and Walden in 1990. The only case of *Nocardia* peritonitis due to *Nocardia farcinica* was reported by Liassine and Rahal in 1992.

High doses of sulphonamides have remained the standard treatment. Recently, however, co-trimoxazole has been used extensively and has been shown to be even more effective in disseminated disease. The *in vitro* susceptibility results using the E-test method showed resistance to co-trimoxazole and imipenem. Acid-fast staining and 8-week selective culture for *Mycobacterium* species were negative. Histological examination of the omental biopsy confirmed nocardiosis.

TABLE I. CASES OF NOCARDIA PERITONITIS REPORTED IN THE LAST TWO DECADES

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Aetiology</th>
<th>Predisposing condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arfania et al.</td>
<td>1981</td>
<td>N. asteroides</td>
<td>CAPD</td>
</tr>
<tr>
<td>Rubin et al.</td>
<td>1987</td>
<td>N. asteroides</td>
<td>CAPD</td>
</tr>
<tr>
<td>Bonacini and Walden</td>
<td>1990</td>
<td>N. brasiliensis</td>
<td>AIDS</td>
</tr>
<tr>
<td>Chan et al.</td>
<td>1990</td>
<td>N. asteroides</td>
<td>Not specified</td>
</tr>
<tr>
<td>Kaczmarski et al.</td>
<td>1990</td>
<td>N. asteroides</td>
<td>CAPD</td>
</tr>
<tr>
<td>Liassine and Rahal</td>
<td>1992</td>
<td>N. farcinica</td>
<td>CAPD</td>
</tr>
<tr>
<td>Lopes et al.</td>
<td>1993</td>
<td>N. asteroides</td>
<td>CAPD</td>
</tr>
<tr>
<td>Rodriguez et al.</td>
<td>1994</td>
<td>N. asteroides</td>
<td>HIV infection</td>
</tr>
<tr>
<td>Present case</td>
<td>2003</td>
<td>N. brasiliensis</td>
<td>AIDS</td>
</tr>
</tbody>
</table>

CAPD = continuous ambulatory peritoneal dialysis.
empirical antibiotics used. Of the 8 cases reported in the literature the only death was in a patient with peritonitis due to *N. brasiliensis*, reported by Bonacini and Walden.\(^8\) That patient, too, was treated with inappropriate broad-spectrum antibiotics.

In patients with features suggestive of abdominal tuberculosis, to be smear-negative for tuberculosis, and in those who do not respond to empirical antituberculous therapy, a high index of suspicion on the part of the clinician and the laboratory personnel is essential and *Nocardia* must be considered. The microbiology laboratory needs to be alerted to the possibility of unusual infections so that the specific isolation conditions of unusual pathogens can be accommodated. We support the view of Curry,\(^8\) viz. that because the treatment of nocardiosis is different from the treatment for the disorders it masquerades as, it is important to establish a firm diagnosis, preferably by culture. Incubation of culture plates must be prolonged to facilitate the detection of the slow-growing *Nocardia* species.\(^9\) The diagnosis is especially important as nocardiosis is a treatable condition and aggressive treatment with co-trimoxazole after appropriate specimens have been sent for culture and susceptibility testing.

The authors wish to acknowledge Professor D. Pudifin, Department of Internal Medicine, University of Natal for referring this patient and the Medical Superintendent of King Edward VIII Hospital, Durban, for allowing us to use the patient’s records.

REFERENCES