The standard treatment for parotid tumours is parotidec-
tomy (partial or total) with sparing of the facial nerve when-
ever possible. The spectrum of parotid neoplasms requiring
parotidectomy has been reported extensively in the European
and American literature.¹,² There have been a few reports of
pathology seen in some parts of Africa,³-⁶ but the spectrum of
parotid disease in southern Africa has not been reported.

Parotidectomy is most commonly performed for benign
tumours, of which pleomorphic adenoma and Warthin’s
tumour are the most common. The disease spectrum dif-
fers in the African population compared to that of the West,
with an increased ratio of malignant to benign tumours in
Africa, and Warthin’s tumours occurring less commonly.⁴,⁵
Metastatic cutaneous squamous cell carcinoma (SCC) has
been shown to be a common cause of parotidectomy in the
Australian population.⁷,⁸ South Africa also has a high inci-
dence of skin cancer, and would presumably reflect this in its
spectrum of parotid disease.

The extent of preoperative investigation for parotid
tumours is a controversial issue, as fine-needle aspiration
biopsy may be unhelpful, and radiological investigation,
especially for benign tumours, often does little to add to the
diagnosis and management.

Facial palsy is the most important and disfiguring conse-
quence or complication following parotidectomy. Studies
have shown that immediate facial nerve dysfunction follow-
ing parotid surgery is common (46%), but that permanent
dysfunction is uncommon (4%).⁹ The reported incidence of
long-term dysfunction is higher in revision cases and with
extended (subtotal or total) parotidectomy.¹⁰

This study details the experience of the second author
(J.J.F.) with parotid surgery over the past 10 years.

Objectives
The study aimed to: (i) review the University of Cape Town
experience with parotidectomy; (ii) report on the histology of
parotid disease requiring parotidectomy; (iii) discuss special
investigations in the management of parotid disease; and
(iv) describe the consequences and complications following
parotidectomy.

Materials and methods
A retrospective review was done of all parotidectomies per-
formed under the care of one ENT (ear, nose and throat)
surgeon (J.J.F.). These operations were done over a period of
10 years (1994 - 2004) at Groote Schuur Hospital, Cape
Town. Surgery done in both the private and public health
sectors was included in the review. At the University of Cape
Town all parotidectomies are performed by the Division of
Otolaryngology. Data were collected from a retrospective
chart review.

Results
Between 1994 and 2004, 199 parotidectomies were per-
formed on 197 patients. Two patients had bilateral parotidec-
tomies. The clinical records of 7 patients were incomplete.

Pathology
Histological results were available for 196/199 parotidec-
tomies (Table I). Tumours were benign in 119 patients (61%)
The ratio of benign to malignant tumours was 2.25:1. Twenty-four patients (12%) had non-neoplastic disease.

Sixty-nine per cent of neoplasms were benign. Pleomorphic adenoma (42%) and Warthin’s tumour (8%) were the most common benign tumours, and accounted for 70% and 13% of benign parotid tumours respectively. One patient had bilateral Warthin’s tumours and underwent bilateral parotidectomy. Four patients had benign lympho-epithelial lesions. Three of these patients were HIV-negative and the lesions were unilateral. One HIV-positive patient underwent parotidectomy for cosmetic reasons. The lesions recurred and bilateral low-dose radiotherapy was given. Other lesions included 2 lymphangiomas and 2 neurofibromas. One case was a 20-year-old girl with neurofibromatosis type 1, and a plexiform neurofibroma of the parotid gland. She had a 14-year history of a right parotid mass, which was particularly disfiguring. The plexiform neurofibroma of the parotid was removed by superficial parotidectomy with sparing of the facial nerve.

Thirty-one per cent of tumours were malignant. Metastatic cutaneous SCC was the most common malignancy and accounted for 22% of parotid malignancies. Metastatic melanoma accounted for 15% of parotid malignancies. Primary parotid malignancies accounted for 16% of parotid tumours. Muco-epidermoid carcinoma accounted for 30% of primary parotid malignancy, followed by acinic cell carcinoma (27%), lymphoma (10%), adenoid cystic carcinoma (10%) and primary SCC (7%). There were 3 lymphomas, 2 primary parotid SCCs and 1 undifferentiated carcinoma. There were no cases of carcinoma ex-pleomorphic adenoma.

Age

The age distribution of patients undergoing parotidectomy is summarised in Table II. The age difference between patients with benign and malignant disease, both primary and metastatic, was statistically significant. Benign tumours occurred at a mean age of 45 years, while malignant tumours occurred at 57 years.

Gender

The gender distribution for specific tumours is given in Table III. Parotidectomies were performed in 118 females (59%) and 81 males (41%). Benign tumours occurred more commonly in females and malignant tumours more commonly in males. Primary parotid malignancies were more common in females and metastatic malignancies more common in males. Pleomorphic adenoma, Warthin’s tumours and muco-epidermoid carcinoma occurred with similar frequency in males and females. Metastatic SCC was more common in males,
while melanoma had an equal gender distribution. An important observation is that 45% of parotid tumours in males were malignant, either primary or metastatic. Data on ethnicity were incomplete so no analysis was done in this regard.

Preoperative investigations

Preoperative investigations are listed in Table IV. Many of these investigations were done by referring physicians, and would not have been requested by the primary surgeon. Trucut biopsy was generally reserved for patients with locally advanced disease that would necessitate either facial nerve or extensive local resection.

Fine-needle aspiration cytology (FNAC)

The most important answer that FNAC should provide for the surgeon is whether the mass is benign or malignant. FNAC was done in 112 (57%) patients, principally by the referring doctors. Specimens were reported as being ‘inadequate/indeterminate’ in 45/112 cases (40%). There was one false-positive diagnosis of malignancy, with a Warthin’s tumour misdiagnosed as muco-epidermoid carcinoma. Three false-negatives for malignancy (4%) were 2 monomorphic adenomas diagnosed as high-grade muco-epidermoid carcinoma and acinic cell carcinoma, and a benign cyst diagnosed as acinic cell carcinoma. The diagnostic accuracy of ‘adequate’ FNAC samples is summarised in Table V. The sensitivity and specificity in diagnosing malignancy were 73% and 98% respectively. The accuracy in diagnosing benign and malignant tumours was 94%.

Morbidity

One hundred and ninety-two patient folders were reviewed for surgical morbidity (Table VI). Frey’s syndrome was not evaluated as patients were not recalled, and without direct questioning the incidence would probably be underreported.

One facial nerve branch (0.5%) had been divided inadvertently. It was primarily repaired and the patient made a full recovery at 6 months. The other permanent palsies (N = 18) occurred after intentional sacrifice of the nerve as it was involved with the tumour. In 4 cases of benign disease, 1 of which was for recurrent pleomorphic adenoma, facial nerve branches (marginal mandibular (N = 3), superior division (N = 1)) were sacrificed. The superior division was repaired with a greater auricular nerve graft, the mandibular branches were not repaired. Facial nerve resection, either complete or partial, was required in 29% (8/28) of primary parotid carcinoma and 24% (6/25) of metastatic malignancy. Facial nerve resection was done in 100% of primary SCC, 50% of undifferentiated, 38% of muco-epidermoid and 25% of acinic cell carcinomas.

Procedures

The procedures performed are presented in Table VII. Flaps were required in 10 patients (radial forearm, antero-lateral thigh, and rectus abdominus free microvascular flaps, and latissimus dorsi pedicled flap).
The incidence of parotid disease in the literature is estimated at 3 - 4 /100 000/year.11,12 We present a review of the experience of a single surgeon (J.J.F.) with parotid surgery over a 10-year period in a southern African setting. In our series parotidectomy was most frequently performed in the 4th decade for benign disease and the 5th decade for malignant disease. Parotid malignancies occurred at a mean age of 57 years, which is similar to the findings of a large series of 1 432 patients reported by Renehan2 in the UK. This differs from findings from central Africa where parotid tumours, both benign and malignant, occurred predominantly in the 3rd decade of life.3-6

Benign neoplasms
Benign tumours occurred more commonly in females, and malignant tumours more commonly in males. Benign tumours comprised 69% of the parotid neoplasms, and pleomorphic adenoma and Warthin’s tumour accounted for 48% and 9% of parotid tumours. Warthin’s tumour occurred with similar frequency in males and females. This differs from all previous publications, which reported Warthin’s tumour to be predominantly a male disease, occurring 2.2 - 7 times more frequently in males.2,10 Warthin’s tumours are very rare in other African series.3-6 They accounted for 0/82 parotid tumours in a series from Tanzania.3 Warthin’s tumours accounted for 9% of parotid tumours in our series, which is much less than the 15 - 22% reported in most Western series.1,2,8,11,12

Malignant neoplasms
Malignant tumours accounted for 31% of parotid tumours. However 45% of parotid tumours in males were malignant, either primary or metastatic. Table VIII compares our results with parotid malignancies in 3 other settings (USA, Australia and Africa).1,3,7

Studies from Uganda and Tanzania reported malignancy in 46% and 47% of salivary gland tumours respectively.3,4 In most Western series parotid malignancies make up only 11 - 28% of parotid tumours.1,2,11,12 The exception is Australia where 44 - 48% of parotid tumours are malignant.7,8 A large proportion of these tumours are metastatic malignancy (75% of parotid malignancy), with cutaneous malignancy (SCC and melanoma) being most common.

Cutaneous metastases
Metastatic malignancy accounted for 45% of parotid malignancy in our series. Metastatic cutaneous SCC (22%) was the most common malignant tumour. It is predominantly a male disease, occurring 5 times as frequently as in females in our study. This would be in keeping with the male preponderance of SCC of the skin in South Africa.13 Cutaneous melanoma accounted for 15% of malignant tumours. A high incidence of cutaneous malignancy as a reason for parotidectomy has been reported in the Australian literature.7,8 O’Brien in Sydney,7 and Bora et al.8 in Brisbane, reported cutaneous SCC in 46% and 48% of malignant tumours. Melanoma accounted for 25% and 7% in the same series.

Primary malignancy
In our series, muco-epidermoid carcinoma was the most common, followed by acinic cell carcinoma, lymphoma and adenoid cystic carcinoma. In other African series malignancies were dominated by muco-epidermoid and adenoid cystic carcinoma.

\begin{table}[h]
\centering
\caption{Fine-Needle Aspiration Cytology (FNAC) in Parotid Tumours ($N = 67$)}
\begin{tabular}{|c|c|c|c|}
\hline
Pathology & FNAC & Malignant & Benign & Total \\
\hline
Malignant & 8 & 1 & 9 \\
Not malignant & 3 & 55 & 58 \\
Total & 11 & 56 & 67 \\
\hline
\end{tabular}
\end{table}

\begin{table}[h]
\centering
\caption{Consequences and Complications of Parotidectomy ($N = 192$)}
\begin{tabular}{|c|c|c|}
\hline
Consequences/complications & N & \% \\
\hline
Facial nerve palsy & 84 & 44 \\
Temporary palsy & 65 & 34 \\
Benign disease & 49 & 26 \\
Malignant disease & 16 & 8 \\
Permanent palsy & 19 & 10 \\
Benign disease & 4 & 2 \\
Malignant disease & 15 & 8 \\
Wound infection & 9 & 5 \\
Seroma & 6 & 3 \\
Haematoma & 6 & 3 \\
Salivary fistula & 4 & 2 \\
\hline
\end{tabular}
\end{table}

\begin{table}[h]
\centering
\caption{Types of Parotidectomy, Additional Surgery ($N = 197$)}
\begin{tabular}{|c|c|c|}
\hline
Procedure & Number & \% \\
\hline
Partial parotidectomy & 152 & 77 \\
Total parotidectomy with sparing facial nerve & 24 & 12 \\
Total parotidectomy with partial facial nerve resection & 17 & 9 \\
Total parotidectomy with total facial nerve resection & 4 & 2 \\
Neck dissections & 27 & 14 \\
Free/pedicled flaps & 10 & 5 \\
Temporal bone resection & 4 & 2 \\
Maxillectomy & 2 & 1 \\
\hline
\end{tabular}
\end{table}
It is possible that the incidence of lymphoma might increase with the AIDS pandemic in southern Africa. In Australia, primary malignant tumours were dominated by adenocarcinoma and muco-epidermoid carcinoma.7,4 In Europe and the USA the most common parotid malignancies are muco-epidermoid, adenoid cystic or acinic cell carcinoma.1,2,11,12

Preoperative investigations

Preoperative special investigations of a parotid lump should only be requested if this is likely to change management. In the developing world setting one also needs to consider pathology such as tuberculosis and HIV-related parotid disease.

In benign disease radiological investigation may distinguish a tumour in the deep lobe from one in the superficial lobe, and it may help to distinguish solid from cystic lesions, but other than this radiological investigation is of little benefit. We employ computed tomography (CT) and magnetic resonance imaging (MRI) to assist with: surgical planning in clinically malignant tumours (fiatity, pain, VIIth weakness, trismus), facial nerve paralysed to assess extension along the fallopian canal, patients with suspected extension to parapharyngeal space, and to determine the extent of recurrent pleomorphic adenoma. The high incidence of imaging studies in benign disease in our study can be attributed to the fact that non-ENT specialists requested most of these before referral.

We employ FNAC only when a diagnosis of malignancy might change our surgical approach, e.g. suspected cutaneous metastatic disease, as such patients require elective neck dissection,7 when facial nerve sacrifice might be required, or when a non-surgical diagnosis such as tuberculosis, sarcoidosis or lymphoma is considered. The low yield (60%) of material suitable for cytological diagnosis is likely to be due to poor training and sampling technique. The accuracy of FNAC in predicting whether a mass is benign or malignant ranges from 81% to 98%.14-15 The accuracy in our series was 94%. Crucially, the specificity of excluding a malignant tumour was 98%. This is in keeping with the results reported by Chan et al.,16 Seethala et al.17 and Frable and Frable.18 We do not advocate routine use of a facial nerve monitor. We use the facial nerve monitor only for revision parotid surgery or for massive tumours when the normal anatomical landmarks of the facial nerve might be obscured. We always use operating loupes (x 2.5), and avoid muscle paralysed. It is useful to stimulate the trunk of the facial nerve at conclusion of surgery to confirm that the nerve and its branches are all intact, and to be able to reassure the patient with postoperative facial weakness that it is temporary.

Conclusions

In conclusion: (i) almost half of parotid tumours are malignant, either primary or metastatic, in South Africa (males), Africa and Australia; (ii) Warthin’s tumours are less common in Africa than in the West, and in our series did not show a male preponderance; (iii) adequate sampling for FNAC is operator-dependent and is likely to improve with training; (iv) FNAC is a highly reliable method of excluding malignancy; and (v) routine facial nerve monitoring is unlikely to improve facial nerve preservation rates in the hands of a surgeon versed in the surgical anatomy of the facial nerve.

References

